Lissajous' Figures
When we superpose two simple harmonic movements with perpendicular directions, we obtain a planar movement that is described by the equations x = A1 * cos(w1*t) y = A2 * cos(w2*t + d)  where the A's denote the amplitudes of the respective movements (horizontal the first one, vertical the second), the w's denote the respective frequencies and d denotes the phase delay between both movements.
If we supply these two signals to the horizontal and vertical inputs of an oscilloscope, its beam will describe a movement that is the result of the superposition of both individual movements and that can adopt several nice figures, depending on the value of the ratio w1/w2 and on d.
These curves are called Lissajous' figures and are specially nice for certain values of the parameters.

Author : Francisco Esquembre  

Date : February 2002

Click image  [eye]

/htdocs/ntnujava/ejsuser/2/users/examples/LissajousComplete_pkg/LissajousComplete.propertiesFull screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list
Press the Alt key and the left mouse button to drag the applet off the browser and onto the desktop. This work is licensed under a Creative Commons Attribution 2.5 Taiwan License
Download EJS jar file(1340.8kB):double click downloaded file to run it. , Download EJS source View EJS source
[/eye] to view another applet