In physics, circular motion is rotation  along a circle: a circular path or a circular orbit. It can be uniform, that is, with constant angular rate of rotation, or non-uniform, that is, with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves circular motion of its parts. We can talk about circular motion of an object if we ignore its size, so that we have the motion of a point mass in a plane. For example, the center of mass of a body can undergo circular motion.

Examples of circular motion are: an artificial satellite orbiting the Earth in geosynchronous orbit, a stone which is tied to a rope and is being swung in circles (cf. hammer throw), a racecar turning through a curve in a race track, an electron moving perpendicular to a uniform magnetic field, a gear turning inside a mechanism.

Circular motion is accelerated even if the angular rate of rotation is constant, because the object's velocity vector is constantly changing direction. Such change in direction of velocity involves acceleration of the moving object by a centripetal force, which pulls the moving object towards the center of the circular orbit. Without this acceleration, the object would move in a straight line, according to Newton's laws of motion.
From  http://en.wikipedia.org/wiki/Circular_motion