$I(\nu,T) = \frac{2 h\nu^3 }{c^2} \frac{1}{e^{h\nu/kT}-1}$ or [img]http://upload.wikimedia.org/math/9/7/4/974887ba0f7030f31b7b27b619afde87.png[/img]

It can be converted to an expression for I'(?,T) in wavelength units by substituting ? by c / ? and evaluating

$ I'(\lambda,T) = I(\nu,T)\left|\frac{d\nu}{d\lambda}\right| $ or [img]http://upload.wikimedia.org/math/2/7/a/27aa3105194d765b91f845f50968e7cf.png[/img]

$\frac{2 h\nu^3 }{c^2}=\frac{2 h(c\lambda)^3 }{c^2}=\frac{2hc}{\lambda^3}$

and from $\nu= c\lambda$, we have

$d\nu=-\frac{c}{\lambda^2}d\lambda$

so

$I(\lambda,T)=\frac{2hc^2}{\lambda^5}\frac{1}{e^{hc/\lambda kT}-1}$ or [img]http://upload.wikimedia.org/math/1/0/c/10c96a8f2af7d9631a0f4dde5b817b62.png[/img]

The above equation is energy per unit wavelength per unit solid angle.

This applets will show six black cureves of blackbody radiation curve betwen Tmin and Tmax.

Another curve in red is also shown (it's temperature can be adjusted with left slider bar)

Maximum wavelength shown can be adjusted with right slider bar.

You can use it for study the intensity for blackbody radiation.

If you want to study different temperature range, You can change Tmin and Tmax, to change the temperature range,too.

The wavelength unit in the simulation is Å (angstrom).

[hide][/hide]

translate strings in simulation to different language format before download

Full screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list

Download EJS jar file(1103.5kB):double click downloaded file to run it. (56 times by 32 users) , Download EJS source (13 times by 9 users) View EJS source

[img]http://upload.wikimedia.org/math/3/6/c/36c7c70624f4ed44af2f004c87bf22c4.png[/img] is the spectral energy density function with units of energy per unit wavelength per unit volume.