2. You can enter [b]scale[/b] by enter numerical value, so you can change the range for x and y to any value you want. (how ever you need to adjust other parameters so that the scale make sense).

3. The max value can be change to 300 only when scale is set to larger than 20.

(from 0.01 to 300 is a very large ratio, it does not make sense for large sigma with small range).

4. The yscale for Gaussian function change according to bounce wall in the y-direction.

Click the eye (image) to display the simulation

[eye]/htdocs/ntnujava/ejsuser/2/users/ntnu/fkh/changeGaussianField6_pkg/changeGaussianField6.propertiesFull screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list

Download EJS jar file(1065.4kB):double click downloaded file to run it. (2 times by 1 users) , Download EJS source View EJS source[/eye]

[hide]

About the unit:

The following equation was used in the simulation:

$a=\frac{d\vec{v}}{dt}=\frac{d^2\vec{x}}{dt^2}= \frac{q \vec{v}\times\vec{B}}{m}$

unit for t is $\mu s=10^{-6}$ , for q is $10^{-19}$C, for m is $10^{-26}$kg, for v is km/s$=10^3$m/s, for B is T.

So the unit for x or y is $\frac{[q][v][ B ]}{[m]}[T^2]=\frac{10^{-19}\, 10^3 \, 1}{10^{-26} } 10^{-12}=10^{-2}$m=cm.

[/hide]

The unit for the x,y coordinate is 10^{-4}m.

For the default setting: m=$10^{-26}$kg, q=$1.6*10^{-19}$C, v=0.2 km/s, B=1 T

$r\approx \frac{m v}{qB}=\frac{10^{-26} 0.2*10^3}{1.6*10^{-19}*1}=\frac{0.2}{1.6}10^{-4}=0.12*10^{-4}$ (m)