Here is another more general case: You can drag the Force arrow to change it's direction.

1. Choose the center of the disk as origin.
Assume the friction force is f, The x, y component of the external force F is Fx, Fy

Then from Newton's law:  $Fx-f=m*a$
The Net torque is $R*f-r*F=I*\alpha$
Assume the disk motion satisfy "Rolling Without Slipping" condition:  i.e. $a=R*\alpha$

$R*f-r*F=I*\alpha= I*\frac{a}{R}=\frac{I}{R} \frac{Fx-F}{m}=\frac{I}{m*R}(Fx-f)$
So $(R+\frac{I}{m*R})f=(r*F+\frac{I}{m*R}Fx)=(r+\frac{I}{m*R}\frac{Fx}{F})*F$

We will get $f=\frac{r+\frac{I}{m*R}\frac{Fx}{F}}{R+\frac{I}{m*R}}*F$

$I*\alpha=R*f-r*F=R*\frac{r+\frac{I}{m*R}\frac{Fx}{F}}{R+\frac{I}{m*R}}*F-r*F=\frac{R*r+\frac{I}{m}\frac{Fx}{F}-r*R-\frac{I}{m}\frac{r}{R}} {R+\frac{I}{m*R}}*F=\frac{R*\frac{Fx}{F}-r}{I+m*R^2}*F=\frac{R*\cos\theta-r}{I+m*R^2}*F$

$I+m*R^2$ is the new "Moment of inertia" if we move the origin to the point disk in contact with the surface.

Click the following image to show the simulation.

/htdocs/ntnujava/ejsuser/2/users/ntnu/fkh/rotatingCylinder3_pkg/rotatingCylinder3.propertiesFull screen applet or Problem viewing java?Add to exception site list
Press the Alt key and the left mouse button to drag the applet off the browser and onto the desktop. This work is licensed under a Creative Commons Attribution 2.5 Taiwan License
Download EJS jar file(990.7kB):double click downloaded file to run it. (2 times by 2 users) , Download EJS source View EJS source