Here is another more general case: You can drag the Force arrow to change it's direction.

1. Choose the center of the disk as origin.
Assume the friction force is f, The x, y component of the external force F is Fx, Fy

Then from Newton's law:  $Fx-f=m*a$
The Net torque is $R*f-r*F=I*\alpha$
Assume the disk motion satisfy "Rolling Without Slipping" condition:  i.e. $a=R*\alpha$

$R*f-r*F=I*\alpha= I*\frac{a}{R}=\frac{I}{R} \frac{Fx-F}{m}=\frac{I}{m*R}(Fx-f)$
So $(R+\frac{I}{m*R})f=(r*F+\frac{I}{m*R}Fx)=(r+\frac{I}{m*R}\frac{Fx}{F})*F$

We will get $f=\frac{r+\frac{I}{m*R}\frac{Fx}{F}}{R+\frac{I}{m*R}}*F$

$I*\alpha=R*f-r*F=R*\frac{r+\frac{I}{m*R}\frac{Fx}{F}}{R+\frac{I}{m*R}}*F-r*F=\frac{R*r+\frac{I}{m}\frac{Fx}{F}-r*R-\frac{I}{m}\frac{r}{R}} {R+\frac{I}{m*R}}*F=\frac{R*\frac{Fx}{F}-r}{I+m*R^2}*F=\frac{R*\cos\theta-r}{I+m*R^2}*F$

$I+m*R^2$ is the new "Moment of inertia" if we move the origin to the point disk in contact with the surface.

Click the following image to show the simulation.
[eye]

/htdocs/ntnujava/ejsuser/2/users/ntnu/fkh/rotatingCylinder3_pkg/rotatingCylinder3.propertiesFull screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list