NTNUJAVA Virtual Physics LaboratoryEnjoy the fun of physics with simulations! Backup site http://enjoy.phy.ntnu.edu.tw/ntnujava/
September 18, 2019, 08:51:25 pm

"That their main business was not put into the mind knowledge which was not there before, but to turn the mind's eye towards light so that it might see for itself." ...Plato's advice to educators(429-347BC)

 Pages: [1]   Go Down
 Author Topic: Similarity between RLC circuit and spring with damping  (Read 7593 times) 0 Members and 1 Guest are viewing this topic. Click to toggle author information(expand message area).
ahmedelshfie
Moderator
Hero Member

Offline

Posts: 954

 « Embed this message on: April 18, 2010, 12:33:05 am » posted from:Uberaba,Minas Gerais,Brazil

This applet created by prof Hwang
Modified interface by Ahmed
Applet explain A mass m attached to a vertical spring (spring constant k) in gravity field:
The above system can be described with
$F=m a_y= mg -ky -b v_y or m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg$

For a RLC circuit with DC source Vc:
The above system can be described with
$Vc=V_L+V_R+V_C or L \frac{d^2Q}{dt^2}+I\frac{dQ}{dt}+\frac{Q}{C}=Vc$,
where $I=\frac{dQ}{dt}, V_R=I R, V_C=Q/C , V_L=L\frac{dI}{dt}$

The differential equation are the same for the above two systems.
So a damped spring system can be simulated with RLC circuit (or RLC circuit can be simulated with damped spring system,too!).
Original project Similarity between RLC circuit and spring with damping

Embed a running copy of this simulation

Embed a running copy link(show simulation in a popuped window)
Full screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list
• Please feel free to post your ideas about how to use the simulation for better teaching and learning.
• Post questions to be asked to help students to think, to explore.
• Upload worksheets as attached files to share with more users.
Let's work together. We can help more users understand physics conceptually and enjoy the fun of learning physics!
 Similarity between RLC circuit and spring with damping.jpg (67.25 KB, 834x562 - viewed 488 times.) « Last Edit: April 26, 2010, 07:21:10 pm by ahmedelshfie » Logged
ahmedelshfie
Moderator
Hero Member

Offline

Posts: 954

 « Embed this message Reply #1 on: April 18, 2010, 01:14:07 am » posted from:Uberaba,Minas Gerais,Brazil

Prof can you fix color down drawing panel and change to black
I try a lot but no have succeed and i don't know why project appear like it
Be cause i change color to black but appear like now. can you solve this problem please
Thanks
 Logged
Fu-Kwun Hwang
Hero Member

Offline

Posts: 3082

 « Embed this message Reply #2 on: April 18, 2010, 08:52:01 am » posted from:Taipei,T\'ai-pei,Taiwan

The background color for drawing is black. There is nothing wrong in the previous case.
If yoy mean there is a gap between top panel and buttom panel.
It is because you add the top panel to north and another panel to south for border layout.
It will be better if you change the top panel to "Center" instead of "Up" position. (right click at top panel and select change it's position).
 Logged
ahmedelshfie
Moderator
Hero Member

Offline

Posts: 954

 « Embed this message Reply #3 on: April 18, 2010, 09:26:37 am » posted from:Uberaba,Minas Gerais,Brazil

Thanks Prof is work now
 Logged
ahmedelshfie
Moderator
Hero Member

Offline

Posts: 954

 « Embed this message Reply #4 on: April 18, 2010, 09:36:31 am » posted from:Uberaba,Minas Gerais,Brazil

After i do what you explain Prof output in ejs console give this
cHotEqn V 4.02 cHotEqn
cHotEqn V 4.02 cHotEqn
Setting eq to
cHotEqn V 4.02 cHotEqn
Setting eq to
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
cHotEqn V 4.02 cHotEqn
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
cHotEqn V 4.02 cHotEqn
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
 Logged
Fu-Kwun Hwang
Hero Member

Offline

Posts: 3082

 « Embed this message Reply #5 on: April 18, 2010, 02:40:49 pm » posted from:Taipei,T\'ai-pei,Taiwan

You changed the "down" panel to "center" instead of "up" panel to "center".
 Logged
ahmedelshfie
Moderator
Hero Member

Offline

Posts: 954

 « Embed this message Reply #6 on: April 18, 2010, 11:38:49 pm » posted from:Uberaba,Minas Gerais,Brazil

I'm change just top panel to center just it
 Logged
Fu-Kwun Hwang
Hero Member

Offline

Posts: 3082

 « Embed this message Reply #7 on: April 19, 2010, 12:00:27 am » posted from:Taipei,T\'ai-pei,Taiwan

Panel2 are slider and equation.
panel6 are tabbedpanel.

You should change panel2 to down and panel6 to center.

 Logged
 Pages: [1]   Go Up
"That their main business was not put into the mind knowledge which was not there before, but to turn the mind's eye towards light so that it might see for itself." ...Plato's advice to educators(429-347BC)

 Related Topics Subject Started by Replies Views Last post Pendulum with damping Dynamics Fu-Kwun Hwang 0 15286 June 25, 2008, 01:10:08 pm by Fu-Kwun Hwang Critical damping of spring Dynamics Fu-Kwun Hwang 0 17926 April 12, 2009, 04:41:25 pm by Fu-Kwun Hwang vertical spring in equilibrium (adjustable gravity,spring constant and mass) Dynamics Fu-Kwun Hwang 3 11318 May 17, 2019, 03:05:19 pm by angelinajolie Similarity between RLC circuit and spring with damping Electromagnetism Fu-Kwun Hwang 0 21052 October 11, 2009, 05:20:56 pm by Fu-Kwun Hwang Critical damping of spring dynamics ahmedelshfie 1 8596 April 27, 2010, 08:25:46 pm by ahmedelshfie
Page created in 0.293 seconds with 24 queries.since 2011/06/15