NTNUJAVA Virtual Physics Laboratory
Enjoy the fun of physics with simulations!
Backup site http://enjoy.phy.ntnu.edu.tw/ntnujava/
September 21, 2018, 07:24:27 pm *
Welcome, Guest. Please login or register.
Did you miss your activation email?

Login with username, password and session length
 
   Home   Help Search Login Register  
Give me a standpoint and I will move the earth. ...Archimedes (287-212BC)
Google Bookmarks Yahoo My Web MSN Live Netscape Del.icio.us FURL Stumble Upon Delirious Ask FaceBook

Pages: [1]   Go Down
  Print  
Author Topic: Similarity between RLC circuit and spring with damping  (Read 7189 times)
0 Members and 1 Guest are viewing this topic. Click to toggle author information(expand message area).
ahmedelshfie
Moderator
Hero Member
*****
Offline Offline

Posts: 954



«
Embed this message
on: April 18, 2010, 12:33:05 am » posted from:Uberaba,Minas Gerais,Brazil

This applet created by prof Hwang
Modified interface by Ahmed
Applet explain A mass m attached to a vertical spring (spring constant k) in gravity field:
The above system can be described with
F=m a_y= mg -ky -b v_y or m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg

For a RLC circuit with DC source Vc:
The above system can be described with
Vc=V_L+V_R+V_C or L \frac{d^2Q}{dt^2}+I\frac{dQ}{dt}+\frac{Q}{C}=Vc,
 where I=\frac{dQ}{dt}, V_R=I R, V_C=Q/C , V_L=L\frac{dI}{dt}

The differential equation are the same for the above two systems.
So a damped spring system can be simulated with RLC circuit (or RLC circuit can be simulated with damped spring system,too!).
Original project Similarity between RLC circuit and spring with damping

Embed a running copy of this simulation

Embed a running copy link(show simulation in a popuped window)
Full screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list
Press the Alt key and the left mouse button to drag the applet off the browser and onto the desktop. This work is licensed under a Creative Commons Attribution 2.5 Taiwan License
  • Please feel free to post your ideas about how to use the simulation for better teaching and learning.
  • Post questions to be asked to help students to think, to explore.
  • Upload worksheets as attached files to share with more users.
Let's work together. We can help more users understand physics conceptually and enjoy the fun of learning physics!


* Similarity between RLC circuit and spring with damping.jpg (67.25 KB, 834x562 - viewed 440 times.)
« Last Edit: April 26, 2010, 07:21:10 pm by ahmedelshfie » Logged
ahmedelshfie
Moderator
Hero Member
*****
Offline Offline

Posts: 954



«
Embed this message
Reply #1 on: April 18, 2010, 01:14:07 am » posted from:Uberaba,Minas Gerais,Brazil

Prof can you fix color down drawing panel and change to black
I try a lot but no have succeed and i don't know why project appear like it
Be cause i change color to black but appear like now. can you solve this problem please
Thanks  Smiley
Logged
Fu-Kwun Hwang
Administrator
Hero Member
*****
Offline Offline

Posts: 3080



WWW
«
Embed this message
Reply #2 on: April 18, 2010, 08:52:01 am » posted from:Taipei,T\'ai-pei,Taiwan

The background color for drawing is black. There is nothing wrong in the previous case.
If yoy mean there is a gap between top panel and buttom panel.
It is because you add the top panel to north and another panel to south for border layout.
It will be better if you change the top panel to "Center" instead of "Up" position. (right click at top panel and select change it's position).
Logged
ahmedelshfie
Moderator
Hero Member
*****
Offline Offline

Posts: 954



«
Embed this message
Reply #3 on: April 18, 2010, 09:26:37 am » posted from:Uberaba,Minas Gerais,Brazil

Thanks Prof is work now  Smiley
Logged
ahmedelshfie
Moderator
Hero Member
*****
Offline Offline

Posts: 954



«
Embed this message
Reply #4 on: April 18, 2010, 09:36:31 am » posted from:Uberaba,Minas Gerais,Brazil

After i do what you explain Prof output in ejs console give this
cHotEqn V 4.02 cHotEqn
cHotEqn V 4.02 cHotEqn
Setting eq to
cHotEqn V 4.02 cHotEqn
Setting eq to
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
cHotEqn V 4.02 cHotEqn
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
cHotEqn V 4.02 cHotEqn
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Logged
Fu-Kwun Hwang
Administrator
Hero Member
*****
Offline Offline

Posts: 3080



WWW
«
Embed this message
Reply #5 on: April 18, 2010, 02:40:49 pm » posted from:Taipei,T\'ai-pei,Taiwan

You changed the "down" panel to "center" instead of "up" panel to "center".
Logged
ahmedelshfie
Moderator
Hero Member
*****
Offline Offline

Posts: 954



«
Embed this message
Reply #6 on: April 18, 2010, 11:38:49 pm » posted from:Uberaba,Minas Gerais,Brazil

I'm change just top panel to center just it
Logged
Fu-Kwun Hwang
Administrator
Hero Member
*****
Offline Offline

Posts: 3080



WWW
«
Embed this message
Reply #7 on: April 19, 2010, 12:00:27 am » posted from:Taipei,T\'ai-pei,Taiwan

Panel2 are slider and equation.
panel6 are tabbedpanel.

You should change panel2 to down and panel6 to center.

Logged
Pages: [1]   Go Up
  Print  
Give me a standpoint and I will move the earth. ...Archimedes (287-212BC)
 
Jump to:  


Related Topics
Subject Started by Replies Views Last post
Pendulum with damping
Dynamics
Fu-Kwun Hwang 0 15015 Last post June 25, 2008, 01:10:08 pm
by Fu-Kwun Hwang
Critical damping of spring
Dynamics
Fu-Kwun Hwang 0 17142 Last post April 12, 2009, 04:41:25 pm
by Fu-Kwun Hwang
vertical spring in equilibrium (adjustable gravity,spring constant and mass)
Dynamics
Fu-Kwun Hwang 2 10617 Last post February 07, 2018, 11:07:19 am
by blackjackds
Similarity between RLC circuit and spring with damping
Electromagnetism
Fu-Kwun Hwang 0 19299 Last post October 11, 2009, 05:20:56 pm
by Fu-Kwun Hwang
Critical damping of spring
dynamics
ahmedelshfie 1 8245 Last post April 27, 2010, 08:25:46 pm
by ahmedelshfie
Powered by MySQL Powered by PHP Powered by SMF 1.1.13 | SMF © 2006-2011, Simple Machines LLC Valid XHTML 1.0! Valid CSS!
Page created in 0.295 seconds with 25 queries.since 2011/06/15