
nice one Andres Fernando Pedraza, and Malory Johana Sanchez From Bogotá. Colombia!
just like to say the facebook fan page connected more people using Ejs to come here
http://www.facebook.com/pages/Easy-Java-Simulation-Official/132622246810575 this duffing oscillator is cool
i read on
and found another cool applets to understand the Ejs version one by afpedraza
http://www.math.udel.edu/~hsiao/m302/JavaTools/osduffng.htmlhttp://www.peter-junglas.de/fh/physbeans/applets/duffingoscillator.htmlhttp://www.scholarpedia.org/article/Duffing_oscillator they look like this

Duffing oscillator is an example of a periodically forced oscillator with a nonlinear elasticity, written as

(1),
where the damping constant obeys , and it is also known as a simple model which yields chaos, as well as van der Pol oscillator.
from
http://dynlab.mpe.nus.edu.sg/mpelsb/me4213/Duffing.htmlDuffing oscillator, a 2 degree of freedom oscillator with cubic stiffness.
x’’ + ax’ + x3 – x = b cos(t)
The oscillator can exhibit chaotic (i.e. irregular) oscillations
Question:
how come the applet is 2 mass oscillating so what is the difference between the red and blue mass?
i open the evolution page and study
dv/dt = -k1*x/m*s*(b*x*x-1)-R/m*v+A*Math.cos(w*t)
dv1/dt = -k1*x1/m*s*(b*x1*x1-1)-R/m*v1+A*Math.cos(w*t)
is it to show despite the same equation and same initial conditions, the red and blue mass ends up differently to show chaos?