NTNUJAVA Virtual Physics Laboratory
Enjoy the fun of physics with simulations!
Backup site http://enjoy.phy.ntnu.edu.tw/ntnujava/
July 16, 2018, 09:29:24 pm *
Welcome, Guest. Please login or register.
Did you miss your activation email?

Login with username, password and session length
 
   Home   Help Search Login Register  
"It is not the strongest of the species that survive, but the one most responsive to change." ..."Darwin(1809-1882, English naturalist Evolution)"
Google Bookmarks Yahoo My Web MSN Live Netscape Del.icio.us FURL Stumble Upon Delirious Ask FaceBook

Pages: [1]   Go Down
  Print  
Author Topic: Motion along cycloidal curves  (Read 8883 times)
0 Members and 1 Guest are viewing this topic. Click to toggle author information(expand message area).
Fu-Kwun Hwang
Administrator
Hero Member
*****
Offline Offline

Posts: 3080



WWW
«
Embed this message
on: September 09, 2009, 12:02:26 pm » posted from:Taipei,T\'ai-pei,Taiwan

The following simulation try to illustrate the properties of cyclodial curves.

\theta=\omega t, x=r(\theta-\sin\theta), y=r(1+\cos\theta)
so x'=r(1-\cos\theta), y'=r\sin\theta
x'^2+y'^2=2r^2(1-\cos\theta)
From conservation of energy: \tfrac{1}{2}mv^2=mgy, v=\tfrac{ds}{dt}=\sqrt{2gy}
dt=\frac{ds}{v}=\frac{\sqrt{dx^2+dy^2}d\theta}{\sqrt{2gy}}=\frac{\sqrt{2r^2(1-\cos\theta)}}{\sqrt{2gr(1-\cos\theta)}}=\sqrt{\frac{r}{g}}d\theta, so T_{1/4}=\sqrt{\frac{r}{g}}\pi

However, from an intermediate point \theta_0, v=\frac{ds}{dt}=\sqrt{2g(y-y_0)}
So T=\int_{\theta_0}^{\pi}\sqrt{\frac{2r^2(1-\cos\theta)}{2gr(\cos\theta_0-\cos\theta)}}d\theta
 
with \sin\frac{x}{2}=\sqrt{\frac{1-\cos x}{2}}, \cos\frac{x}{2}=\sqrt{\frac{1-\cos x}{2}}

T=\sqrt{r}{g}\int {\theta_0}^{\pi} \sqrt{\frac{\sin\tfrac{\theta}{2}d\theta}{\cos^2\tfrac{\theta_0}{2}-\cos^2\tfrac{\theta}{2}}}
define u=\frac{\cos\tfrac{\theta}{2}}{\cos\tfrac{\theta_0}{2}}, du=\frac{\sin\frac{\theta}{2}d\theta}{2\cos\tfrac{\theta_0}{2}}

T=\sqrt{r}{g}\int_1^0 \frac{du}{\sqrt{1-u^2}}=2\sqrt{r}{g}\sin^{-1}u|_0^1=\sqrt{r}{g} \pi
So the amount of time is the same from any point.

1. A cycloid is the curve defined by the path of a point on the edge of circular wheel as the wheel rolls along a straight line.
2. Cycloidal curves is the curve of fastest descent under gravity
3. the period of a ball rolling back and forth inside this curve does not depend on the ball’s starting position.

Embed a running copy of this simulation

Embed a running copy link(show simulation in a popuped window)
Full screen applet or Problem viewing java?Add http://www.phy.ntnu.edu.tw/ to exception site list
Press the Alt key and the left mouse button to drag the applet off the browser and onto the desktop. This work is licensed under a Creative Commons Attribution 2.5 Taiwan License
  • Please feel free to post your ideas about how to use the simulation for better teaching and learning.
  • Post questions to be asked to help students to think, to explore.
  • Upload worksheets as attached files to share with more users.
Let's work together. We can help more users understand physics conceptually and enjoy the fun of learning physics!


* cycloidalcurves.gif (7.16 KB, 800x411 - viewed 407 times.)
Logged
Pages: [1]   Go Up
  Print  
"It is not the strongest of the species that survive, but the one most responsive to change." ..."Darwin(1809-1882, English naturalist Evolution)"
 
Jump to:  


Related Topics
Subject Started by Replies Views Last post
simple harmonic motion with angular motion
Wave
inayet ali 1 22869 Last post May 15, 2009, 08:39:26 pm
by daryy
relations between simple harmonic motion and circular motion
Kinematics
Fu-Kwun Hwang 2 37584 Last post April 15, 2016, 11:21:50 pm
by lookang
Blackbody radiation curves for different temperatures
Modern Physics
Fu-Kwun Hwang 23 59304 Last post April 14, 2009, 10:08:50 pm
by lookang
Cycloidal Pendulum
Kinematics
Fu-Kwun Hwang 0 16768 Last post September 06, 2009, 05:54:01 pm
by Fu-Kwun Hwang
Cycloidal Pendulum
kinematics
ahmedelshfie 2 7635 Last post June 25, 2010, 08:21:50 pm
by ahmedelshfie
Powered by MySQL Powered by PHP Powered by SMF 1.1.13 | SMF © 2006-2011, Simple Machines LLC Valid XHTML 1.0! Valid CSS!
Page created in 1.271 seconds with 22 queries.since 2011/06/15