# NTNUJAVA Virtual Physics LaboratoryEnjoy the fun of physics with simulations! Backup site http://enjoy.phy.ntnu.edu.tw/ntnujava/

## Easy Java Simulations (2001- ) => electromagnetism => Topic started by: ahmedelshfie on April 18, 2010, 12:33:05 am

 Title: Similarity between RLC circuit and spring with damping Post by: ahmedelshfie on April 18, 2010, 12:33:05 am This applet created by prof HwangModified interface by AhmedApplet explain A mass m attached to a vertical spring (spring constant k) in gravity field:The above system can be described with$F=m a_y= mg -ky -b v_y or m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg$For a RLC circuit with DC source Vc:The above system can be described with$Vc=V_L+V_R+V_C or L \frac{d^2Q}{dt^2}+I\frac{dQ}{dt}+\frac{Q}{C}=Vc$, where $I=\frac{dQ}{dt}, V_R=I R, V_C=Q/C , V_L=L\frac{dI}{dt}$The differential equation are the same for the above two systems.So a damped spring system can be simulated with RLC circuit (or RLC circuit can be simulated with damped spring system,too!).Original project Similarity between RLC circuit and spring with damping  (http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1248.0) Title: Re: Similarity between RLC circuit and spring with damping Post by: ahmedelshfie on April 18, 2010, 01:14:07 am Prof can you fix color down drawing panel and change to blackI try a lot but no have succeed and i don't know why project appear like it Be cause i change color to black but appear like now. can you solve this problem pleaseThanks   :) Title: Re: Similarity between RLC circuit and spring with damping Post by: Fu-Kwun Hwang on April 18, 2010, 08:52:01 am The background color for drawing is black. There is nothing wrong in the previous case.If yoy mean there is a gap between top panel and buttom panel.It is because you add the top panel to north and another panel to south for border layout.It will be better if you change the top panel to "Center" instead of "Up" position. (right click at top panel and select change it's position). Title: Re: Similarity between RLC circuit and spring with damping Post by: ahmedelshfie on April 18, 2010, 09:26:37 am Thanks Prof is work now  :) Title: Re: Similarity between RLC circuit and spring with damping Post by: ahmedelshfie on April 18, 2010, 09:36:31 am After i do what you explain Prof output in ejs console give thiscHotEqn V 4.02 cHotEqncHotEqn V 4.02 cHotEqnSetting eq to cHotEqn V 4.02 cHotEqnSetting eq to Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_ccHotEqn V 4.02 cHotEqnSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgcHotEqn V 4.02 cHotEqnSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_cSetting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mgSetting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c Title: Re: Similarity between RLC circuit and spring with damping Post by: Fu-Kwun Hwang on April 18, 2010, 02:40:49 pm You changed the "down" panel to "center" instead of "up" panel to "center". Title: Re: Similarity between RLC circuit and spring with damping Post by: ahmedelshfie on April 18, 2010, 11:38:49 pm I'm change just top panel to center just it Title: Re: Similarity between RLC circuit and spring with damping Post by: Fu-Kwun Hwang on April 19, 2010, 12:00:27 am Panel2 are slider and equation.panel6 are tabbedpanel.You should change panel2 to down and panel6 to center.