NTNUJAVA Virtual Physics Laboratory
Enjoy the fun of physics with simulations!
Backup site http://enjoy.phy.ntnu.edu.tw/ntnujava/

Easy Java Simulations (2001- ) => electromagnetism => Topic started by: ahmedelshfie on April 18, 2010, 12:33:05 am



Title: Similarity between RLC circuit and spring with damping
Post by: ahmedelshfie on April 18, 2010, 12:33:05 am
This applet created by prof Hwang
Modified interface by Ahmed
Applet explain A mass m attached to a vertical spring (spring constant k) in gravity field:
The above system can be described with
$F=m a_y= mg -ky -b v_y or m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg$

For a RLC circuit with DC source Vc:
The above system can be described with
$Vc=V_L+V_R+V_C or L \frac{d^2Q}{dt^2}+I\frac{dQ}{dt}+\frac{Q}{C}=Vc$,
 where $I=\frac{dQ}{dt}, V_R=I R, V_C=Q/C , V_L=L\frac{dI}{dt}$

The differential equation are the same for the above two systems.
So a damped spring system can be simulated with RLC circuit (or RLC circuit can be simulated with damped spring system,too!).
Original project Similarity between RLC circuit and spring with damping  (http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1248.0)


Title: Re: Similarity between RLC circuit and spring with damping
Post by: ahmedelshfie on April 18, 2010, 01:14:07 am
Prof can you fix color down drawing panel and change to black
I try a lot but no have succeed and i don't know why project appear like it
Be cause i change color to black but appear like now. can you solve this problem please
Thanks   :)


Title: Re: Similarity between RLC circuit and spring with damping
Post by: Fu-Kwun Hwang on April 18, 2010, 08:52:01 am
The background color for drawing is black. There is nothing wrong in the previous case.
If yoy mean there is a gap between top panel and buttom panel.
It is because you add the top panel to north and another panel to south for border layout.
It will be better if you change the top panel to "Center" instead of "Up" position. (right click at top panel and select change it's position).


Title: Re: Similarity between RLC circuit and spring with damping
Post by: ahmedelshfie on April 18, 2010, 09:26:37 am
Thanks Prof is work now  :)


Title: Re: Similarity between RLC circuit and spring with damping
Post by: ahmedelshfie on April 18, 2010, 09:36:31 am
After i do what you explain Prof output in ejs console give this
cHotEqn V 4.02 cHotEqn
cHotEqn V 4.02 cHotEqn
Setting eq to
cHotEqn V 4.02 cHotEqn
Setting eq to
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
cHotEqn V 4.02 cHotEqn
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
cHotEqn V 4.02 cHotEqn
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c
Setting eq to m\frac{d^2y}{dt^2}+b\frac{dy}{dt}+ky=mg
Setting eq to L\frac{d^2Q}{dt^2}+R\frac{dQ}{dt}+\frac{Q}{C}=V_c


Title: Re: Similarity between RLC circuit and spring with damping
Post by: Fu-Kwun Hwang on April 18, 2010, 02:40:49 pm
You changed the "down" panel to "center" instead of "up" panel to "center".


Title: Re: Similarity between RLC circuit and spring with damping
Post by: ahmedelshfie on April 18, 2010, 11:38:49 pm
I'm change just top panel to center just it


Title: Re: Similarity between RLC circuit and spring with damping
Post by: Fu-Kwun Hwang on April 19, 2010, 12:00:27 am
Panel2 are slider and equation.
panel6 are tabbedpanel.

You should change panel2 to down and panel6 to center.